Multifractal spectra of Moran measures without local dimension

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New relative multifractal dimension measures

This paper introduces a new class of fractal dimension measures which we call relative multifractal measures. The relative multifractal measures developed are formed through a melding of the Rényi dimension spectrum, which is based on the Rényi generalized entropy, and relative entropy as given with the Kullback-Leibler distance. This new class of multifractal measures is then used to find the ...

متن کامل

Multifractal Decompositions of Moran Fractals

We present a rigorous construction and generalization of the multifractal decomposition for Moran fractals with intinite product measure. The generalization is specilied by a system of nonnegative weights in the partition sum. All the usual (smooth) properties of thef(a) theory are recovered for the case that the weights are equal to unity. The generalized spectrum, !(a, r~), is invariant to a ...

متن کامل

Multifractal Dimension Spectra in Polymer Physics

We study the multifractal properties of diffusion in the presence of an absorbing polymer and report the numerical values of the multifractal dimension spectra for the case of an absorbing self avoiding walk or random walk.

متن کامل

Multifractal spectra of typical and prevalent measures

When these two dimensions coincide, we say that μ admits a local dimension at x and we denote this common value dimloc(μ;x). The study of pointwise dimension maps and their relationship to Hausdorff dimension goes back to Bilingsley ([Bil60], [Bil61]). Setting E−(μ;α) = {x ∈ K; dimloc(μ;x) ≤ α} E(μ;α) = {x ∈ K; dimloc(μ;x) ≤ α}, it is well known that dimH(E−(μ;α)) ≤ α for any α ∈ [0,dimH(K)] di...

متن کامل

A Multifractal Analysis of Gibbs Measures for Conformal Expanding Maps and Markov Moran Geometric Constructions

We establish the complete multifractal formalism for Gibbs measures for confor-mal expanding maps and Markov Moran geometric constructions. Examples include Markov maps of an interval, hyperbolic Julia sets, and conformal toral endomorphisms. This paper describes the multifractal analysis of measures invariant under dynamical systems. The concept of a multifractal analysis was suggested by seve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nonlinearity

سال: 2019

ISSN: 0951-7715,1361-6544

DOI: 10.1088/1361-6544/ab45d7